Monday, October 18, 2010

Fermion vs. Boson & Irreversibility

Ever wonder why superfluids can move without friction?
Ever wonder why electrons can move in superconductors without resistance?

How can bosons (like superfluid helium or electron pairs) seemingly avoid generating an increase in entropy?

I'm not saying that there's a violation of the 2nd Law here (it's not like entropy is decreasing.) It's more like it's staying flat rather than increasing.

Does non-equilibrium thermodynamics not apply to Bose-Eisenstein condensates? And if so, does this somehow imply that there would be no increase in entropy if all the particles in the universe were B-E condensate?

Irreversibility clearly happens in Fermi-Dirac "condensate" such as metals and in Boltzmann gases, so I'm not sure why B-E condensate is special?

Is it just that irreversible process happens much slower? Or is it that irreversible processes just don't happen at all?

Clearly, I don't understand something. So, if you have any answers to the question ( how can B-E condensate move without generating an increase in entropy?), please let me know in the comment's space.

(post note: check out the following post where I argue that the difference between bosons and fermions and there ability to generate entropy may be related to the fact that the weak nuclear force is not time symmetry and that it couples to left-handed particles (or right handed anti-particles) only. This suggestions that pairs of electrons that form a pair might not interaction via the nuclear force, and hence might not generate entropy.)

No comments:

Post a Comment